Fast and Effective Multiple Moving Targets Tracking
Method for Mobile Robots

Jiyoon Chung and Hyun S. Yang!
Center for Artificial Intelligence Research, Dept. of Computer Science, KAIST
373-1 Kusong-dong, Yusong-ku, Taejon, 305-701, KOREA

Abstract

In this paper we describe a iracker that provides
real-time visual feedback using on-board low-cost pro-
cessors. The proposed iracker is based on the Two
Stage Visual Tracking Method (TSVTM) which con-
sists of real-lime kernel, image saver, daiabase, and
vision module. Real-time kernel based on the Earlist-
Deadline-First scheduling policy provides the capabil-
ity of processing tasks with time consiraints within the
deadline. Image saver takes the responsibility for keep-
ing all the incoming images until they can be processed.
Database keeps both the estimated and the prediciive
location, velocity, intensily, eic of each region that
makes up the target.

Vision module consists of two modules: the Firsi-
Stage Vision Module (FSVM) and the Second-Stage
Vision Module (SSVM). The FSVM processes the
whole image to initially recognize targets using the so-
phisticated vision algorithms while the SSVM can eas-
ily find and track them using the focus-of-attention
strategy based on Kalman filter since the SSVM knows
the approzimated location and useful features of the
targets. Combining the above four mechanisms effec-
tively, TSVTM can track targets every one thirtieth of
a second.

1 Introduction

Visual information is one of the most power-
ful sources of sensory information available to au-
tonomous mobile robots. However existing visual per-
ception systems are potentially too slow for real-world
domains. When a robot wants to accomplish vision
tasks, it lacks computational ability since the require-
ments of the vision task increase rapidly in proportion
to the performance improvement of a computer. There
are several solutions to make up for this computational
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shortage. One of the most popular solutions is for a
robot to have special purpose hardwares designed to
accomplish a few specific vision tasks. The following
are two examples of this. HERMIES III[5] equipped
with an NCUBE hypercube computer has been used
in experiment to clean a simulated chemical spill. It
weighs 820kg plus the weight of the batteries which
is about 410kg. Extasy-1I[6] has a Vision Processor
(VP) supported by 16 CPUs to track the fixed red
landmark to make the correspondence problem easier.

In recent research, many robots have been designed
to efficiently use their resources by integrating vi-
sion sensors and actuators with a visual perception
system[7]. This system processes only the interest-
ing parts of an image and reduces the size of data to
be processed. As a result a robot has fewer compu-
tational requirements and its cost and size are pared
down. This method has an inherently large variation
of response times according to the content of the in-
formation available at that time.

Some robots were designed to operate without any
special purpose hardwares. However, they can not
usually use a vision sensor as an absolute sensor due
to the lack of the computation speed. Instead they
use ultrascund or infrared sensors as a relative sensor,
since these sensors do not require a massive compu-
tation. Such robots can not get the correct position
due to the unbounded accumulation of errors. There-
fore, many researchers must have assumptions[3] or
active beacons[9] to obtain the information about the
environment. Unfortunately, they are either very slow
or inaccurate[8], or even unreliable[10]. In order to
navigate autonomously in an unknown space, a robot
must have a vision capability to obtain its absolute
position. However, it is difficult for all robots to be
equipped with a computer fast enough to process vi-
sion tasks since we must consider their cost, weight,
size, and so on. For these reasons, we have studied a
method that robots can perform vision tasks without
having to employ special purpose hardwares.

Research in computer vision has traditionally em-
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phasized the paradigm of image understanding. Many
researchs in the field of robotics have also studied to
reconstruct the scene, by which a robot can reduce
its positional uncertainty. This approach requires the
precise measurement of the position so vision systems
are characteristically viewed as computationally ex-
pensive, error-prone, and difficult to calibrate. How-
ever, if vision is used to measure error which is the
visual distance between a target and a pre-defined po-
sition with respect to the visual coordinate, then the
system is much less dependent on calibration. Hence
it is extremely robust in calibrating error. By tracking
multiple moving targets and observing their errors a
robot can easily know its position. Some works have
been reported and conducted on the use of vision in-
formation for tracking in the dynamic feedback loop
[4], [11]. These works are focused on the control of a
robot, rather than on the visual perception. This pa-
per mainly describes the tracking method and briefly
the control of a robot.

1.1 System overview

Since robots we are considering don’t have any spe-
cial purpose hardwares, they must use the method of
lightening the load. In other words, they must reduce
the search space, by using the information collected
from the previous executions. The contents of the in-
formation affect computational need of a robot that is
necessary to accomplish the vision tasks. Therefore,
We can reduce this needs by dividing the vision task
into two stages according to the information available.
The first vision module will be computationally more
expensive and complex since it has to create a lot of
information to recognize the targets. However, the
second vision module may easily find targets. This is
because the previous executions provide the informa-
tion about the approximate location and useful fea-
tures of the targets such as the shape and intensity
of each region that compose a target. The compu-
tational requirement in our method is shown in Fig-
ure 1. The distance between the dotted lines in the
figure indicates robot’s ability. The computational re-
quirement of the first run for a vision task is several
times higher than that of the others. Since it may ex-
ceed the robot’s ability, it might not meet the certain
deadline. If a robot adopting our method can sacrifice
the responsiveness of the vision tasks and if the large
variation of the response time can be treated reason-
ably, then a robot can accomplish a vision task at a
real-time rate.

When we assume that the vision system of a robot
operates as in Figure 1. the second and third runs can-
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Figure 1: Diagram showing the computational re-
quirement for vision tasks

not be executed on time since the first run of the task
uses more computation than allowed. The images that
are grabbed while the first image is being processed
will be lost unless the images are kept in the system
until the first one is finished. So our method has the
image saver which keeps the images until they can be
processed. Several tasks achieving behaviors are in-
volved in the vision task. They are used to inquire
the results and to issue the instructions. Consider a
situation in which a robot uses the vision system as
an absolute sensor to correct its position. The robot
must wait for the results of the vision task to become
available unless the variation of the response time is
carefully treated. Therefore, we have developed a real-
time kernel to execute multiple tasks within its spec-
ified time constraint. With the real-time kernel sev-
eral tasks such as the image saver and a motor control
loop are scheduled and the mechanism to communicate
with each other is also provided.

2 The two stage visual

method (TSVTM)

tracking

The TSVTM consists of real-time kernel, image
saver, database and vision module. The vision module
is divided into two modules according to the informa-
tion available. They are the first-stage vision module
(FSVM) and the second-stage vision module (SSVM).
The FSVM has to process the whole image to recog-
nize targets, so it needs a lot of computation time.
However, the SSVM can easily find and track them by
focusing on interesting parts of an image, which have
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already been obtained from the previous execution of
either the FSVM or the SSVM. Since the SSVM knows
the approximate location and useful features of the
targets, it can achieve a fast response time. Therefore,
the overall computational requirement of the TSVTM
becomes less strict. Since the FSVM needs more com-
putation time than given, the incoming irmages during
the execution will be lost. Because of this we designed
the image saver to take responsibility for keeping all
the incoming images until they can be processed. The
database keeps both the estimated and the predictive
location, velocity, intensity, etc. of each region that
makes up the target. Using the information in the
database the SSVM verifies its result by using the pre-
defined constraints. Whenever a fault is discovered, it
sends a signal to the real-time kernel to invoke the
FSVM.
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Figure 2: Overview of Two Stage Visual Tracking
Method

The tasks, including the TSVTM, are scheduled
with their own time constraints. The tmage saver has
a very strict time constraint since it has to put an in-
coming image from the camera into the queue every
one thirtieth of a second. The FSVM has no time con-
straint at all. However, it should be as fast as possible,
because it affects the response time of the TSVTM.
The SSVM has a time constraint, but violation of the
deadline does not make the overall system fail since
the image saver will save the incoming images.

Figure 2 shows an overview of the TSVTM. There
are three computing modules. Each of them has its
own computational requirements: Co, C; and C, de-

note the computation time of FSVM, SSVM, and the
image saver, respectively. C; denotes the computa-
tion time equivalent to the time that it takes to grab
an image, one thirtieth of a second.

There are two constraints in the TSVTM.

C; +C, <Cf (1)
Co—(Cf—C,) S
{ c,-c, | 2)

Eq. 1 shows the constraint on the computation time
of the SSVM and the image saver. The summation of
them must be less than Cy, or it will cause the length
of the queue in the image saver to grow unboundly.
Eq. 2 shows the constraint on memory which is nec-
essary for the image saver to store the images into
the queue. The denominator on the left side of Eq. 2
is the given computation time for the FSVM and the
numerator is the excess of the computation time over
given. Thus, the image saver must have the same
number of image buffers as the left side of the equa-
tion. We assume that the size of an image buffer is I,,
so the minimum memory space of the TSVTM should
be larger than S,.

Co—(Cf—-C,)
Cs —(Cs + Ci) 3)

The TSVTM will have the fastest response time only
after the SSVM has been invoked as many times as in
Eq. 3 from the last invocation of the FSVM. Therefore,
the TSVTM is well suited for the applications which
need to track targets in real-time and endure a slightly
longer initial response time.

3 An implementation of the TSVITM

Existing trackers can be divided into two groups,
depending upon the measurement data used. One
group is based on the optical flow field, while the
other is based on the correspondence of discrete fea-
tures such as points, lines, and contours. The optical
flow field technique is usually time-consuming and it
is difficult to recover the structure of the scene when
both the camera and the target move independently.
Much of the earlier work involved using two or three
frames of images, which is nonrobust and numerically
unstable[2]. In this section, we will describe the imple-
mentation of the tracker as an example of the TSVTM.
The tracker partly alleviates these problems by the
use of a continuous sequence of image frames. Most

— 2647 —



tracking tasks are divided into two portions: acquisi-
tion and tracking itself. Therefore, they correspond
exactly with the FSVM and SSVM in the TSVTM.

The tracker trys to track multiple targets such as
the one in Figure 3 by using two big eyes, an open
mouth and two horns. Tracking is accomplished by
the recognition of a target, rather than the correspon-
dence of discreate features. Therefore, the correspon-
dence problem is removed so the tracker is reliable and
robust.

3.1 The EDF-based real-time kernel

The tracker’s performance depends not only on the
logical results of the computation, but also on the time
in which the results are produced. For example, the
image saver must be performed within one thirtieth of
a second. Otherwise, the image in the frame grabber
will be lost. In addition, a robot has many intrinsic
periodic activities such as low-level servo-loop, trajec-
tory planning, etc. They must be executed within
strict time constraints in order to guarantee the sta-
bility of the system. A robot also has aperiodic activ-
ities that must be completed within their deadlines.
To support both the tracker and the other tasks, we
have designed a real-time kernel based on the Earlist-
Deadline-First (EDF) scheduling policy. This means
that, at all times, a processor is assigned to the task
whose deadline is the closest. The kernel has three
priority classes, HARD, SOFT and NRT (Non Real-
Time). A HARD task has the highest priority and is
either a periodic or a sporadic process with a critical
deadline. A SOFT task has fewer strict time con-
straints and is either periodic or sporadic. A NRT
has no time constraints at all and is the lowest prioz-
ity. The kernel works as follows: as long as there are
runnable processes in higher priority class, just each
task has been scheduled with EDF fashion for its own
mazimum estimated ezecution time (MET). The ker-
nel never bothers with lower priority classes.

3.1.1 Process communication

To provide communication facilities among processes,
we developed two mechanisms: skared port and shared
queue. Shared port was designed for applications in-
terested in the latest message only, while shared queue
was designed for the one needed to store unread mes-
sages. Shared port is fast and asynchronous. Its mes-
sage is non consumable and can be overwritten. It
always has the latest messages in its buffer. It is use-
ful in many tasks such as a control loop and a sensory
acquisition processes. Shared gqueue is the same as a

normal queue except that it has several pointers for
deleting an element in the queue. A task that wants
to access shared queue must acquire access permission
with a pointer. A pointer is necessary in deleting an
element from the queue. If a task with access per-
mission does not delete elements, the length of the
queue will grow unboundly. To prevent this, we have
designed it to automatically delete an out-dated ele-
ment whenever an overflow of the queue occurs.

3.2 The First Stage Vision Module

To recognize a target, an image is segmented into
a set of regions. To do this we use one of the con-
ventional region-based segmentation algorithms called
Partition-Mode- Test (PMT) [1]. The PMT algorithm
is quite fast because it performs image segmentation
by scanning the whole image one time. Features can
then be extracted from each region. These include the
centroid, mean intensity, area, aspect ratio, minimal
boundary rectangle and shape of the region. We can
reduce the number of regions by limiting their feature
values. For example, we can assume that an area of a
region that makes up a target must exceed 40 pixels.
The remaining regions are then labeled by heuristics.
Even though many remarkable methods in image la-
beling have been developed, we do not adopt these
methods of labeling since we prefer the fast response
time of the system as opposed to the quality. The
procedure listed below shows the FSVM of a tracker.

1. An image is segmented into a set of regions by
the PMT.

2. Features of each region are extracted.

3. Regions with unqualified feature values are fil-
tered out.

4. Candidates are made by grouping regions in ac-
cordance to their geometrical relation.

5. The target can be found by matching the feature
values of each candidate to the predefined ones.

After the target has been found, we must write the
information necessary in the database for the SSVM to
track it. The information includes the position of the
object in the image plane, the mean intensity, size and
aspect ratio of each region that composes the object.

3.3 The Second Stage Vision Module

Using the information acquired from the FSVM or
from the previous run of the SSVM, the SSVM can
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limit what a robot has to look for and where it has
to look for it. Some region-based segmentation algo-
rithms such as the PMT [1] treat the whole image, so
it is not suitable in the second stage. Another method
called region growing can segment only interesting ar-
eas. From the given seed points, it can grow regions by
appending each seed point to those neighboring pixels
which have a similar intensity. It has difficulty forming
of a stopping rule and choosing a set of seed points.
Fortunately, these problems are easy for us to solve,
since we have enough clues to choose the seed points
and to make the stopping rules. Since the database
has kept the estimated and predictive information, we
can easily determine them. The predictive centroid of
each region serves as the seed point while the mean
intensity and size of the region as the stopping rule.
Only one candidate is made by the SSVM and it must
be tested by matching the predefined feature values.
Passing the test does not guarantee a proper tracking.
Since the SSVM sometimes tracks false targets, the
target must be periodically verified. Whenever a fault
is discovered, it sends a signal to the real-time kernel
to invoke the FSVM.

3.3.1 The prediciion of seed points

Since the region growing make different results de-
pending on their seed points, we have to choose the
seed points that are the closest to the centroid of the
region to which it belongs. Each seed point is in the
2-D position on the image plane. Its velocity and ac-
celeration are unknown and can not be measured since
it moves by different control system such as another
robot or a human body. To describe it, we use the
Brownian motion model, since, from the robot’s point
of view, the target object moves around randomly. As
a result the velocity in the state may be affected by a
white noise u(t): ¥ = u(t),u(0) = 0,u ~ (0,0). The
Kalman filter problem is formulated in terms of two
equations 4 and 5. In a linear systemn, this takes the
form:

1 67T 0O
01 ¢ T
e N E (4)
6 0 0 1
1 0 0 0O
yk:[o 1 0 O]zk—knk (8)

where the matrix in Eq. 4 is called the state transi-
tion matrix denoted A, and the one in Eq. 5 is called
the measurement matrix denoted C. The state is
z = [p; py vz vy|T, with p,(t) and p,(t) the positions,

vz (t) and vy (t) the velocities. T is the sample period,
one thirtieth of a second. This system has no control
input. w(t) is a state noise and n(t) is a measurement
noise with

w(t) ~ (0,Q), n(t) ~ (0, R), (8)
Q = diag{0.001T, 0.001T, 3T, 3T}, R = 0.1/T. (%)

The initial position covariance is taken in the appro-
priate units as 1. Then =(t) ~ (Z(0), Po),

Py = diag{1,1,1/T%1/T?}, (8)

where Z(0) = [pz(0) py(0) 0 0]7, p;(0) and p,(0) are
the position of the object given by the FSVM. Ini-
tial velocities may be taken as zeros since we can not
measure them.

Now, we can predict the object as a set of seed
points. The system modeling in the Eq. 4 is used to
predict the next state as a seed point. Using the state
at time sample k, the predictive state at time k + 1
denoted 2, is predicted:

:i:;+1 = Ai. (9)

The predicted error covariance matrix can also be
computed at this stage:

P, = AP A" + Q. (10)

We can start the region growing with 2., ,. If the
segmented regions are proven to the object whose po-
sition on the image plane is y(t) = [z;, 3%, then the
measurement update will be made as follows:

Peyr= Pr,, — Pr CT(CPCT + R)"ICP,;F |
11
8ry1 =85y + Po1CT R (41 — Ciyy)  (12)

4 Summary and Discussion

We have implemented and tested several applica-
tions of the TSVTM on the intelligent mobile robot
CAIR-2, as seen in Figure 3. Some experimental re-
sults of visual tracking will be in the video proceed-
ings of this conference.

In this paper, we have proposed a real-time visual
tracking method and introduced the intelligent mobile
robot CAIR-2. Even though the tracker was designed
to recognize and track several moving targets simulta-
neously, fast special purpose hardwares are not neces-
sary to accomplish it. Therefore, we can make a robot

— 2649 —



Figure 3: CAIR-2 following a target using the pro-
posed visual tracker

with the real-time visual tracker smaller and cheaper
by employing this method.

To overcome its inherently large variation of re-
sponse time coming from the two stage strategy, a
real-time kernel and the image saver were developed
to manage the resources efficiently. The image saver
takes responsibility for keeping all the incoming im-
ages until they can be processed, therefore this method
is able to track targets every one thirtieth of a second.
Many applications are not required to meet a dead-
line in a whole time. In many industrial applications,
when an object is about to appear in view of the cam-
era, the robot will have an opportunity to find it and
track it before it disappears from view. Therefore, the
proposed visual tracker can play an important role in
many fields where initial response time does not really
matter.

In addition, the tracker was designed to cooperate
with the other tasks. Whenever it does not find a tar-
get in the camera’s view, it requests a certain task to
change the view. For example, imagine that a robot is
looking in the opposite direction of the targets. Even
though the targets are near by, it can not see them.
When this happens, the tracker cooperates with the
task that is designed to reason the locations of targets.

We have developed several application programs
based on the TSVTM. Some of them were exhibited
outdoors for three months for real world demonstra-
tions during world EXPO 93 held in Taejon, Korea,
1993.
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