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Abstract 

This paper proposes a collision avoidance 
behavior model for crowd simulation based on 
psychological findings of human behaviors such 
as gaze-movement angle (GMA), side stepping, 
gait motion, and personal reaction bubble (PRB) 
to get better results in crowd simulation. By 
calculating the GMA between agents, collision 
can be predicted and avoided without knowing 
the exact trajectories of the agents. The 
proposed model consists of four phases: (1) 
GMA-based collision prediction for mid/long 
range by using speed-variant Information 
Process Space (IPS), (2) collision avoidance 
steering, (3) gait-based locomotion generation, 
and (4) space-keeping based on PRB. The 
effectiveness of the proposed speed-variant IPS 
was tested on various types of agent flows with 
different densities. The total loss of kinetic 
energy accumulated during an agent’s 
movement and the ratio of the length of the path 
actually traveled to the length of the original 
path are used as key metrics to figure out the 
features between the different types of flows. 
Finally, examples of tuning the parameters with 
well-known fundamental diagrams are 
presented. 
 
Keywords: collision avoidance, crowd 
simulation, speed-variant information process 
space (IPS), gaze movement angle (GMA), 
personal reaction bubble (PRB), gait motion 

1. Introduction 

Crowd simulation synthetically reproduces the 
appearance or effect of interaction amongst a 

large number of people or of objects moving 
together. Ever since the work of [1], which 
proposed a rule-based behavioral modeling 
methodology for “bird-like objects: boids,” 
many researchers have proposed and have 
developed new concepts and models for crowd 
simulation. The main application fields of 
crowd simulation are in engineering and 
entertainment applications. The former includes 
safety engineering, civil engineering, and 
architect. The later includes computer game and 
computer animation. 
 
The research fields of crowd simulation can be 
divided into six different areas: (1) generation of 
virtual individuals, (2) crowd animation, (3) 
crowd behavior generation, (4) interaction with 
virtual crowds, (5) virtual crowd rendering, and 
(6) integration of crowds in virtual 
environments [2]. Among these areas, crowd 
behavior generation is a key field in determining 
the quality of crowd simulation that is needed 
for both entertainment and engineering crowd 
simulations. 
 
The behavior models for crowd simulation 
normally fall into one of following three 
categories: social force models (SFM), cellular 
automata models (CAM), and agent-based 
models (ABM). Crowd behavior is the result of 
an individual’s interaction with other 
individuals, groups, and/or surroundings. 
Different methods should be used when 
describing the individual level motions and the 
crowd level motions. Individual level motion 
focuses on describing the physical motion by 
using inverse kinematic methods or motion 
capture methods that help express the desired 
movements. On the other hand, because the 



latter one describes the interaction between 
individuals forming a virtual crowd, it focuses 
more on describing and modeling behaviors 
based on judgments and perception/cognition 
such as path planning, group behavior, and 
steering behavior. 
 
The steering behavior of an individual or group 
in crowd simulation has drawn the biggest 
attention of researchers. Steering behavior, 
being a unit of the entire moving crowd, can be 
a critical element that can influence the 
accuracy and the realism of a crowd simulation. 
Reynolds proposed various types of steering 
behavior such as offset pursuit, arrival, obstacle 
avoidance and unaligned collision avoidance 
[3]. Among these, collision avoidance and 
obstacle avoidance can be regarded as the key 
feature of realistic crowd simulation because we 
can get more reliable data for an engineering 
application and have a more realistic scene for 
an entertainment application by making 
collision avoidance behavior more realistic.  
 
In this paper, we propose a collision avoidance 
behavior model that is based on psychological 
findings to generate more human-like collision 
avoidance behaviors. The remainder of this 
paper begins with a review of related work. In 
the third section, algorithms for collision 
prediction and collision avoidance are 
proposed. Experiments and results are presented 
in the fourth section. Then we close this paper 
with conclusion and future work. 

2. Related Work 

A SFM generates collision avoidance behaviors 
of individuals in the crowd by summing up five 
virtual force terms [4]. When interactions 
amongst sparsely populated pedestrians occur, 
the SFM suffers from a short range of repulsive 
force, which leads to excessively frequent 
urgent detours of pedestrians to avoid physical 
contact. This behavior is not like the real world 
behavior. To solve this problem, Pelechano et 
al. and Karamouzas et al. embodied an explicit 
collision prediction phase in SFM [5][6]. 
Steffen increased the application time of the 
repulsive force to implement the function of 
foresight that gives the same effect to crowd 
interaction as collision prediction does [7]. 
 

A cellular automata is a discrete model that 
consists of a regular grid of cells, each cell 
having a finite number of states. No collision 
occurs in CAM because CAM adopts hard-core 
exclusion that does not permit a cell to be 
occupied by more than one person at the same 
time. There is no explicit collision prediction 
phase in CAM. A state transition function can 
be defined to imply collision prediction and 
collision avoidance. Loscos et al. proposed a 
collision prediction method for CAM [8]. They 
check up to five cells ahead to avoid collision. 
EXODUS stores potentials on the cells for a 
virtual crowd to use as a potential map for 
global or local routing [9].  
 
Lastly, ABM uses behavioral rules for modeling 
each person’s behavior, which varies from 
situation to situation [10][11][12]. In ABM, 
findings on human behaviors are reflected to the 
model by rules. Behavior rules in ABM mimic 
those of humans. Agents should examine their 
surroundings, and depending on each agent’s 
situation it should decide if to follow another 
agent, walk inline, or avoid an obstacle. Multi-
resolution collision avoidance model proposed 
in [13]. If there is enough time to change the 
direction for the predicted collision, collision 
avoidance technique type I, which considers 
both the change of speed and the change of 
direction, is used, otherwise type II, which 
considers change in direction only, is used. 
Fuertey does analysis on obstacles’ positions 
and speeds in planning safe trajectories for 
agents in collision avoidance [14]. In the work 
by Metoyer and Hodgins, monitoring and 
yielding tasks are used to avoid collision [15]. A 
linear trajectory extrapolation is used for 
collision prediction in [16]. The collision 
reactions are classified into two categories: 
speed modification and direction modification 
[8]. Differently from other works, Rymill and 
Dodgson approached crowd simulation on the 
basis of psychology [17]. They applied 
psychological findings to their steering model 
for crowd simulation but their usage of 
psychological findings is fractional and limited 
to the generation of collision avoidance steering 
behavior. 



3. Proposed Model 

In this work, a collision avoidance behavior 
model for ABM that is based on psychological 
findings of human behaviors in a crowd is 
proposed. The psychological findings applied to 
the proposed model covers all phases of 
collision avoidance behaviors: sensing, 
collision prediction, collision avoidance 
steering, locomotion, and space-keeping. 

 

3.1 Speed-variant Information Process Space 

The area that the observing pedestrian considers 
is the one in which a collision with another 
pedestrian could occur in a short time. This area 
is called an Information Process Space (IPS) 
[18]. IPS is a conceptual area that determines 
the spatial boundary within which all other 
pedestrians are treated as potential clashers to 
the observing pedestrian. 
 
By using an eye tracker and an environment 
mockup, Kitazawa and Fujiyma found three 
interesting things regarding IPS: (1) pedestrians 
are more interested in objects right in front to 
which the lateral distance is small, (2) the 
pedestrian seldom fixates objects with a GMA 
bigger than 45 degrees, and (3) the duration of 
the first fixation on the leading pedestrian is less 
than that of coming pedestrians [18]. GMA is 
discussed in section 3.2.  
 

 
Figure 1 : The IPS of the proposed model 
 
In considering these findings a fan-shaped and 
speed-variant IPS for collision prediction is 
applied in the proposed model (Figure 1).  The 
proposed IPS has the longest range in the 
direction of zero degrees GMA. The sectional 
angle of the IPS is 90 degrees when a pedestrian 
moves at its maximum walking speed. The 
angle, however, increases as the pedestrian loses 

its speed. When it stops, the sectional angle of 
the IPS becomes 180 degrees. This is intuitively 
natural. The sectional angle of IPS is determined 
by expression (1). 
 

𝜑𝜑 = 180 − 90 �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚_𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒
�        (1) 

 

3.2 GMA-based Collision Prediction 

Normally, in crowd simulation, time-to-contact 
and distance-to-contact are calculated to predict 
a collision. This calculation assumes that both 
pedestrians maintain constant velocity. This is, 
however, not the process we carry out for 
collision prediction in our everyday life. A 
pedestrian does not walk in a constant velocity. 
Cutting et al. found a collision prediction model 
based on the angle between the movement 
direction of a person and the gaze angle to the 
other person, namely the gaze-movement angle 
(GMA) [19]. They tried to identify how people 
can predict collisions with stationary and 
moving obstacles without knowing the exact 
trajectory of other obstacles. Ondřej et al. 
introduced a GMA-based collision avoidance 
model for crowd simulation [20]. Their 
research, however, does not embrace the 
routines for identification of collision type. 
Different types of collision trigger different 
types of collision avoidance behavior. This 
paper proposes a GMA-based collision 
avoidance model for crowd simulation by 
introducing indicator functions for collision 
prediction and collision type identification. 
 

 
Figure 2 : GMA between pedestrians 
 
The GMA corresponds to the difference 
between the angle of movement direction and 
the angle of the gaze direction in Figure 2. The 
gaze angle corresponds to the direction of the 
other pedestrian from the observer. In this work, 
the pedestrian with the smaller GMA is defined 
as the observing pedestrian and the other one 
with the bigger GMA as the observed 



pedestrian. In situations of approach, one of 
three cases will occur: (1) passing in front, (2) 
collision, or (3) passing behind. Positive 
changes in GMA occur when the observing 
pedestrian is going to pass in front of the 
observed pedestrian. Negative changes occur in 
the case of passing behind. No change implies 
collision. 
 
On the basis of such findings, a collision 
prediction method based on the GMA for crowd 
simulation is proposed. The method predicts 
that there is to be a collision if two conditions 
between the observing pedestrian and the 
observed pedestrian are met simultaneously: (1) 
both pedestrians maintain constant GMAs 
between them and (2) the distance to the 
observed pedestrian from the observing 
pedestrian consecutively decreases. In real life, 
according to the findings by Cutting et al., 
pedestrians check the variations on the 
appearance size of an object while predicting 
collisions. If the object comes to the observer, 
the appearance size of the object increases. In 
the proposed model, the distance to the object is 
calculated instead of measuring the appearance 
size of the object. 
 

𝐼𝐼𝑐𝑐𝑐𝑐�{𝑔𝑔𝑖𝑖}𝑖𝑖=𝑡𝑡
𝑡𝑡+𝑛𝑛−1, {𝑑𝑑𝑖𝑖}𝑖𝑖=𝑡𝑡

𝑡𝑡+𝑛𝑛−1�

=  �true, if |𝑔𝑔𝑖𝑖 − 𝑔𝑔𝑡𝑡| <  𝜀𝜀𝑖𝑖 and �
𝑑𝑑𝑖𝑖+1

𝑑𝑑𝑖𝑖
� < 1

false, otherwise                                        
 (2) 

 
The GMA-based collision prediction Icp of an 
observing pedestrian α basing its observations 
on an observed pedestrian β for n simulation 
clocks is defined as expression (2) where i, j ∈ 
{t, t + 1,…, t + n - 1}, gi is the GMA of β 
observed by α at simulation time i, di is the 
distance between α and β at simulation time i, r 
is the radius of the torso of pedestrian s, and εi = 
sin-1(2r / di). 
 

 
Figure 3 : εi for side collision 
 

 
Figure 4 : εi for head-on collision 
 
In the indicator function, Icp, the threshold for 
being a constant GMA is represented by εi. If the 
deviation of GMA values in a collision 
prediction cycle is smaller than εi, those GMA 
values are considered constant (Figure 3 and 4). 
 
There are three types of collision a pedestrian 
can encounter while he or she moves: (1) head-
on collision, (2) rear-end collision, and (3) side 
collision. 
 
If Icp is true, a collision between the observing 
pedestrian and the observed pedestrian would 
occur soon. In this work, side collision is treated 
as a general and inclusive collision model. A 
head-on collision and a rear-end collision can be 
considered as special cases of side collision. If 
only Icp is true, side collision is predicted. Head-
on collision and rear-end collision require 
additional conditions. A head-on collision or a 
rear-end collision can occur when the GMA of 
β from α is zero. Because Icp already has the 
error term εi, in considering the radius of the 
human torso, gt for Icp is zero when determining 
a head-on collision or a rear-end collision. The 
condition for head-on collision and rear-end 
collision is described in expression (3). This 
means that a head-on collision or rear-end 
collision can occur when β moves directly in 
front of α consecutively and the distance 
between α and β monotonously decreases. 
 

𝐼𝐼𝑐𝑐𝑐𝑐 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 with 𝑔𝑔𝑡𝑡 = 0           (3) 
 
In addition to the satisfaction of (3), if the 
movement direction of α and that of β is the 
same, the collision would be rear-end (4) where 
Mα and Mβ are the average movement direction 
of α and β respectively, and Ɵ is the threshold 
for being collinear. 
 

�𝑀𝑀𝛼𝛼 − 𝑀𝑀𝛽𝛽� < Ɵ    or
�𝑀𝑀𝛼𝛼 − 𝑀𝑀𝛽𝛽� > 360 − Ɵ

          (4) 

 



On the other hand, if the movement directions 
of two pedestrians are opposite, the collision 
would be head-on. The expression (5) describes 
the conditions of head-on collision where Mα 
and Mβ are the average movement direction of α 
and β respectively, and Ɵ is the threshold for 
being collinear. 
 

180 − Ɵ < �𝑀𝑀𝛼𝛼 − 𝑀𝑀𝛽𝛽� < 180 + Ɵ           (5) 
 
GMA-based collision prediction has several 
advantages over the time-to-contact approach. It 
is more robust to variations in the speed and the 
path of the other pedestrian. It does not assume 
either constant speed or a linear path; the 
accuracy of the prediction is not affected by 
these variations. During a step period, the 
pedestrian’s GMA and distance is calculated 
just a several times because the accuracy of the 
prediction would be good enough just with 
seldom calculations, which is normally not the 
case in other models. 
 

3.3 Collision Avoidance Steering Model 

In the previous section, a method for collision 
prediction between two pedestrians has been 
proposed that checks if the following two 
conditions are satisfied: (1) that there are 
constant GMAs of the observed agent from the 
observing one and (2) that there is a consecutive 
decrease of distances from the observing 
pedestrian to the observed one. 
 
We propose a steering algorithm that makes the 
agents in crowd simulation (1) change their 
movement direction and speed for collision 
avoidance according to collision type, (2) keep 
space properly with other agents, and (3) 
execute locomotion based on human gait-
motions. 
 
For a given agent β that is identified to collide 
with an observing agent α, the proposed 
algorithm checks collision type first. If a head-
on collision with β is predicted to happen, α 
should select a direction to avoid the collision: 
right or left of β. If the observing agent α is to 
collide with the observed agent to its right side, 
α will move to the left and vice versa. If a rear-
end collision is predicted, α would decide if to 
overtake β or not in the real world. It is, 
however, assumed that α would overtake β if 
possible because a rear-end collision would 

occur only when the observing agent is faster 
than the observed agent. If a side collision is 
predicted, the observing agent reduces its speed 
to avoid collisions. The output of the proposed 
algorithm is the direction and the length of a 
new step. These steering parameters would be 
realized by real gait motion. 
 

3.4 Gait-based Locomotion 

To avoid collisions with other agents, the 
steering action that was decided in the previous 
phases is yet to be realized in the locomotion of 
an observing agent. The steering action just 
determines the speed and movement direction of 
the agent. Because gait motion carries out the 
actual locomotion of an agent, realization of the 
locomotion should reflect features of the gait 
motion. 
 

 
Figure 5 : Four parameters of gait motion used 

in the proposed model 
 
In this work, to make the locomotion of agents, 
two parameters of the gait motions, stride pitch 
and direction, are controlled by simply changing 
the leg angles. Stride length is controlled by the 
angle between the forward leg and the backward 
leg, which is twice the forward step length, or 
2∙λF. The stride direction is controlled by φF and 
the lateral stride angle of a leg φL (Figure 5). By 
controlling φL, an agent can change its 
movement direction without changing the 
direction of its whole body. 
 
Accelerations and decelerations are carried out 
by increasing and decreasing φF in a single gait 
cycle and in two gait cycles respectively as it 
was found by [21]. A constant stride period is 
used although it seems to have a relationship 
with λF. On the contrary, λF and λL are influenced 
by each other because it is unrealistic for both 
of them to have their maximum value at the 
same time. To control the gait motions in 



changing the direction of the locomotion, three 
types of directions are used: (1) heading 
direction, (2) stride (or moving) direction, and 
(3) target direction (Figure 6). The heading 
direction is the direction to which the upper part 
of an agent’s body faces. The moving direction 
is the actual movement direction by controlling 
φF and φL. For a side step while going forward 
to avoid a head-on collision with an oncoming 
agent, the moving direction of an agent is 
changed while the heading remains unchanged. 
The target direction is the direction from the 
agent’s current position to the position to which 
an agent wants to go. In changing the movement 
direction, the difference between the heading 
and the target direction is first calculated. If the 
difference is bigger than the threshold, the 
heading is changed to have the same value with 
the target direction, which leads to a directional 
change of the whole body of an agent.  In the 
other case, a side step is added while going 
forward until the heading and the target 
direction become the same. 
 

 
Figure 6 : Three types of directions used in 

controlling gait motions 
 
By aligning the heading direction with the 
moving direction, the proposed method 
naturally implements one of the very interesting 
behaviors of a pedestrian: returning to his or her 
original course after overtaking or performing 
collision avoidance. After changing his or her 
direction to avoid a collision, rather than going 
straight towards his or her goal, the pedestrian 
returns to the original path (or line of walk) that 
he or she was on before the detour [22]. 
 

3.5 Personal Reaction Bubble Space-keeping 

According to the findings by Hall [23], there are 
four layers of spaces around a person, from the 
inner to the outer: (1) intimate space, (2) 
personal space, (3) social space, and (4) public 
space. These spaces together are named as the 
personal reaction bubble (PRB).  Although the 
radiuses of bubbles may vary from culture to 

culture and from situation to situation, people 
keep the concept of PRB when they interact 
with people. For collision avoidance steering 
behavior, ellipse-shaped personal space is 
usually applied. The investigation by [24] on the 
size and shape of personal spaces for different 
speed and gaze angles on an obstacle supports 
the usage of an ellipse-shaped personal space 
(Figure 7). 
 

 
Figure 7 : Personal space for different gaze 

angles by Gérin-Lajoie et al. 
 
In this work, a space-keeping algorithm for the 
personal space of a pedestrian in a crowd 
simulation applying the findings of [24] is 
proposed. In the algorithm, the personal space 
for a different gaze angle is modeled by 
checking that the distance from the observing 
agent α to the observed pedestrian β in the next 
step of α is sufficient for the personal space of 
both α and β (Figure 8). To make two agents 
confronting with each other avoid a collision 
collaboratively, the observed agent also tries to 
find a collision-free direction when the 
observing agent is finding a direction for next 
step. 
 

 
Figure 8 : Checking the distance between 

agents on the next step 

4. Experiments and Results 

4.1 Geometries and Scenarios 

The proposed model was tested for various 
numbers of agents on a crossroad to simulate 
three kinds of collisions: side collisions, head-
on collisions, and rear-end collisions. The 
dimensions for the tested crossroad is shown in 
Figure 9. In addition to the variations in the flow 



of pedestrians, various densities of pedestrians 
were tested due to the fact that the specific flow 
rate of pedestrians is heavily affected by the 
density of pedestrians. 
 

 
Figure 9 : Dimensions of crossroad experiment 
 

4.2 Changes Influence in IPS Sectional Angle 

Various sectional angles of the IPS were tested 
to show how it influences side collision 
detection. Agents with a fixed sectional angle of 
20, 45, 90, and 180 degrees were test for 
densities (persons/m2) between 0.1 and 1.0. 
Agents with a speed-variant sectional angle that 
varies from 20, 45, and 90 degrees to 180 
degrees according to their movement speed 
were also tested with the same range of density. 
 

 
Figure 10 : The ratio of side collision 

avoidances to total collision 
avoidances versus number of people 

 
The results show that the ratio of side collision 
avoidances to total collision avoidances 
increases as the sectional angle increases 
(Figure 10). A smaller sectional angle restricts 
the agent to have more chances to detect side 
collisions. Because agents would just reduce (or 
change) their speeds to avoid side collisions, 
while head-on collision or rear-end collision 

changes their moving directions leading to 
consumption of more energy, the side collision 
avoidance is a more efficient way of collision 
avoidance. Another interesting finding from this 
test is that a 90 degree sectional angle gives the 
agent a similar number of chances for detecting 
side collisions to that of a wider sectional angle. 
Speed variant sectional angles also generate 
similar results. It is believed that these results 
explain the finding of Kitizawa and Fujiyama 
very well. If the sectional angle of an observing 
agent is smaller than 90 degrees, it would fail to 
detect side collision with other agents that also 
have sectional angles smaller than 90 degrees. 
People seem to know this rationale without 
recognizing the principle of their collision 
avoidance behaviors. 
 

4.3 The Influence of the Type of Agent Flow 

 
Figure 11 : Trajectories of agents in all-

directional flow 
 
The length of the path traveled Pt with that of 
the original path Po was selected as the metric to 
identify the influence of agent flow. The 
original path is straight whereas the traveled 
path is winding. The ratio values of Pt/Po are 
equal or bigger than 100%. Figure 11 shows 
much more realistic trajectories of pedestrians 
in the proposed model than those in SFM for the 
all-directional flow at crossroad. In Figure 12, 
the path ratios percentage is mapped to area 
densities (persons/m2) that are shown for all 
crowd simulation flow types experimented and 
reran for each density. When considering the 
density, counter flow is most expected to force 
people to deviate from their original walking 
paths, followed by all-directional flow, then 
cross flow. Unidirectional flow of course 
doesn’t cause deviating paths unless a fast 
walking pedestrian encounters a slow walking 
pedestrian from directly behind, so the ratio 
climbs at a much slower rate when density 



increases compared to the other experimental 
flows. It is confirmed that the more the traveled 
path deviates from the original path, the higher 
the ratio because more people are found in the 
particular density that force others to move out 
of their way. Lower density means less people 
per square meter, which means less chance for 
deviation from original paths. Thus with 
increasing density there is more people to cause 
path deviations, which explains the increasing 
ratios. 
 

 
Figure 12 : Pt/Po versus densities in different 

types of pedestrian flow 
 

 
Figure 13 : Kinetic energy loss versus densities 

in different types of pedestrian flow 
 
In addition to the length of the path traveled, 
accumulative kinetic energy loss can be a good 
metric to represent the characteristic of collision 
avoidance behavior of agents. In the real world, 
when pedestrians are required to avoid 
collisions, they would change their moving 
direction or speed. Kinetic energy loss may 

occur during the reduction of speed in avoiding 
collision. 
 
In Figure 13, the average accumulative kinetic 
energy loss among pedestrians is mapped to 
densities (persons/m2) for the four experimental 
flow types. Each simulation flow was rerun for 
each density. Accumulative kinetic energy loss 
in our case is the accumulation of the wasted 
kinetic energy that occurs when a pedestrian 
cannot maintain speed by slowing down to 
avoid a collision with another pedestrian. If 
speed is maintained, no kinetic energy is lost, 
and any gained kinetic energy by recovering 
speed is ignored because measuring the average 
accumulative kinetic energy loss shows how 
well the simulation can handle collision 
avoidance. 
 
As the density increases, more people contribute 
to people walking deviating paths. Walking the 
deviating path increases the chance for 
additional kinetic energy loss compared to 
walking the straight original path to the same 
destination. So it comes to no surprise that 
unidirectional flow causes the least kinetic 
energy loss because all people are just walking 
straight to their destination from the same 
direction with little maneuvering due to walking 
speed differences. Cross flow is a bit similar 
except pedestrians also avoid bumping into 
crossing people by slowing down a bit and 
regaining original speed (and thus maintaining 
original straight paths for the most part). Where 
the noticeable difference regarding average 
accumulative kinetic energy loss is, is in all-
directional flow, where much path deviation can 
be expected because of expected head-to-head 
confrontations in addition to side collisions. 
 

4.4 Parameters for Fundamental Diagrams 

There has been much research to find out the 
relation between density ρ and pedestrian flow 
J (or specific flow per unit width Js = J/w). The 
fundamental diagram shows the characteristics 
of a group of pedestrians. For a given density of 
crowd, the average flow rate (or average 
walking speed) of the crowd is determined. The 
fundamental diagram of certain crowd differs 
from country to country and from culture to 
culture. In case of the proposed model, it was 
found that the fundamental diagram of a 
pedestrian group with an average height of 1.75 



m (or 0.72 m of leg) is very similar to that of 
Predtechenskii and Milinskii [25] [26]. If the 
average height of a pedestrian group becomes 
1.85 m with 22 degrees of the forward rotation 
angle of the leg, the group produces a 
fundamental diagram similar to that of Older 
[27] (Figure 14). Figure 15 is a snapshot of the 
experiments. 
 

 
Figure 14 : Fundamental diagram of the 

proposed model 
 

 
Figure 15 : A snapshot of experimentation 
 

5. Conclusions 

We proposed a collision avoidance behavior 
model that is based on the psychological 
findings of human behaviors to make the 
simulation act like the pedestrians in the real 
world. The contributions of the proposed model 
are: (1) GMA-based collision prediction for 
mid/long range by using speed-variant 
Information Process Space (IPS), (2) collision 
avoidance steering, (3) gait-based locomotion 
generation, and (4) space-keeping based on 
PRB. A fan-shaped (longest at zero degrees 

GMA) and speed-variant IPS has been 
implemented to make the collision prediction 
more human-like. When people are moving 
very fast, the field of vision is limited to 90 
degrees, but when losing speed, this angle 
widens until about 180 degrees, which means 
the person stopped. This is a big contrast to the 
semicircle shape for IPS in other simulations. 
 
The advantage of GMA-based collision 
prediction is the robustness to variations in the 
speed and the path of the pedestrians. Real 
people change GMA to avoid walking or 
running into other people whether they realize it 
or not. The combination of speed reduction and 
the change of the heading direction is only used 
as a last resort when the pedestrians are too 
close to each other, or when the pedestrian has 
winded far off the original path and the angle to 
the destination is large enough such that side-
stepping is unnatural. Furthermore, our model 
has more human-like behavior due to 
prioritizing side-stepping in steering from a 
distance over simply changing the heading 
direction. 
 
Like in real life, personal space is simulated in 
our PRB algorithm which makes sure that 
realistic space-keeping is kept between 
pedestrians. The effectiveness of the proposed 
speed-variant IPS was tested on various types of 
agent flows with different densities. Total loss 
of kinetic energy accumulated during an agent’s 
movement and the ratio of the length of the path 
actually traveled to the length of the original 
path are used as key metrics to figure out the 
features between different types of flow. 
Finally, the proposed model has shown its 
applicability to crowd simulation for 
engineering by being tuned to well-known 
fundamental diagrams. 
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